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ABSTRACT

This paper presents an application of the
multiple regression method to the identification of
the nonlinear relationship between cross-flow and
in-line, vortex-induced vibration. Previous results
of bispectral analysis of the Castine data by Jong [7]
indicated that cross~flow and in-line response are
correlated quadratically for both lock-in and
non-lock-in cases. Therefore, a second order
nonlinear system was used to model the relationship
between cross-flow and in-line vibration. The
cross-flow response is treated as the input to the
nonlinear system and the in-line response is defined
as the output. Both time domain and frequency domain
multiple regression methods are presented in the
evaluation of the quadratic system function under
lock-in and non-lock—in conditions respectively.
Nonlinear input/output correlationms higher than second
order in the relationship are shown to be negligble.

NOMENCLATURE

x(t) cross—-flow acceleration

y(r) in-line acceleration

y1{t) output from the Case 1
square law operator

ya(t) output from the Case 2
square law operator

yg(t) simulated in-line response

Yo d.c. component of the in-line
response

n(t) noise

g(u,v),g1( ),82( ) second order impulse
response function

h(u) linear impulse response
function :

G(w) : special form of g(u,v)

K order of linear convolution

M order of the second order
convolution

G(Wy,W2),G1(W1,W2)Ga(Wy,Wz)
Fourier transforms of g, gi,

and g7
H(w),H; (W) ,Ho(W) Fourier transform of h(u),
hy (w)ho(u)
MSE mean square error
El ] expected value operator
Sxx(W) auto spectrum of x{t)
Sxy (W) cross spectrum of x(t) and

y(t)

Bxxx(Wp,Wq) autoc bispectrum of x(t)
Bxxy(Wm,Wn) cross bispectrum of y(t) and x(t)
W frequency (radians/sec)

6( ) delta function

I unity vector

- underscore indicates a vector

[} square brackets indicate a matrix
INTRODUCTICN

Marine risers, pipelines, and hydrophone cables
are all examples of structures subjected to
vortex~induced vibration. The response of the
cylinder depends on a complex interaction between the
natural modes of the vibration and the vortex-shedding
process. The implementation of good design procedures
that account for strumming vibration is becoming more
essential as the offshore industry moves intc deeper
water.

In a spatially uniform flow, lock-in may occur
when the vortex-shedding frequency is within a few
percent of a cylinder's natural frequency. Sustained
periodic vibration results in both in-line and
cross—flow directions. The cross—-flow motion is
dominated by one mode at the natural frequency of the
cylinder. The in-line motion is dominated by a
frequency twice that of the cross-flow motion. Typical
in-line amplitudes are one-half that of the cross-flow
displacement [8].

When the shedding frequency is outside the
lock-in bandwidth, non-lock-in occurs and the response
time histories in both in-line and cross-flow
directions are best described as random processes.
Several modes may respond in both directions. The
cross-flow response frequencies are generally
dominated by natural frequencies of the cylinders. The
response frequencies typical of the in-line motion are
not typically natural frequencies, but are most
closely associated with sums of frequencies of
dominant cross flow spectral peaks. The evidence of
frequency doubling and summing under lock-in and
non-lock-in conditions supports the hypothesis that
in-line and cross-flow response are non-linearly
correlated. As an initial test a bispectral analysis
of flow induced vibration data obtained during a field
test at Castine, Maine, was performed by Jong {7]. A
very clear nonlinear correlation was evident between
in-line and cross-flow vibration. The
cross—bicoherence provided conclusive evidence that
cross-flow and in-=line response are correlated



quadratically for both lock-in and nom-lock-in cases.
These conclusions suggested that, in general, a second
order nonlinear system can be used to model the
relationship between cross-flow and in-line response.

The data analyzed in this paper was gathered
during a field test in Castire, Maine in 1981. The
experimental arrangements are described in Refs. 7 and
17 and are very briefly described here. A steel tube
75 feet of the long (22.86 m) and 1.625 inches in
diameter (4.13 cm) was suspended horizontally under
tension between two pilings. A spatially uniform
tidal current normal to the longitudinal axis of the
cylinder provided the vortex related excitation.
Tension, current, drag force, and seven biaxial
cyiinder accelerations were recorded. Reynolds numbers
of 300 to 20,000 were encountered.

The- purpese of the research described in this
paper was to examine the adequacy of a second order
system in modelling flow induced vibration as observed
in the Castine tests and to show that significant
contributions, due to higher order nonmlinearities, do
not exist. To address this issue a quadratic system
identification was performed for both the previous
lock~in and non~lock-in cases. Due to the nature of
nearly deterministic lock-in response, a time domain,
multiple regression method was applied in the system
identification procedure, while a frequency domain
error minimization method was used for the
non-lock-in, random vibration cases. The results
showed that nonlinearities higher than second order
were negligible for both lock-in and non-lock-in.
Linear and second order correlation exist at lock-in.
Whereas, in-line and cross-flow responses were
linearly independent at non-lock-in and quadratic
correlation accounted for all but a small amount of
the nonlinear correlation between in-line and
cross—-flow vibration.

QUADRATIC SYSTEM IDENTIFICATION AT LOCK-IN

Initjally, the bispectrum analysis was used to
identify the quadratic correlation between cross—flow
and in-line vibration. In this section, the
relationship between cross-flow and in-line response
is modelled with a second order nonlinear system,
including a linear term and quadratic term. An error
term is also introduced to represent imperfections of
the model which might be due to the existence of the
higher order nonlinearities. The linear and quadratic
impulse response functions are identified for the
lock-in case by using a time domain mmltiple
regression method. By one and two dimensional
convolution of the identified linear and quadratic
impulse response functions with the measured
cross-flow response, the in-line response can be
predicted. The predicted and measured in-line
response agree very well, as will be demonstrated with
Castine field test data. '

Application of Multiple Regression Analysis

Let the input x(t) be the cross-flow response, and
output y(t), the in-line response. x(t) and y(t) are
assumed to be related by a second order system as
follows.

k-1

y(t) = y0 + ] h(wWx{t-u) +

u=0
M-1 M-1

I 1

u=0 v=0

(L

g(u,v)x(t-u)x{t-v)+a(t)

where n(t) is the error term, h(u) is the iinear
impulse response function and g(u,v) is the second
order impulse response kernel. Given the meazured
input andoutput data, x(t) and y(t)=1,2,...(N+K~1).
the system functions h(u) and g(u,v) are to be
determined in such a way that the estimated mean
square error (MSE) is minimized. It was assumed with
no loss of generality, that the second order impulse
response kernel is symmetrical in its arguments:

g{u,v)=g(v,u) (2a3
and thus their Fourier transforms are alsc symmetrical
G(Wy,Wa)=G(Wy,Wy) . (25
Consequently, the quadratic transfer functiom is
symmetric abeut the line Wi=W; ian the bi-freguency
plane. Equation (1) can then be rewrittenm in mstrix
form as:

F=yo+{x]h+[z]G+n (3)

where
unknowns h(u) v=0,1,...,K-1

unknowns g(u,v) u=C,1,...,M~1 v=0,1,...,M-1
NN=N+K-1 , MM=M(M+1)/2
z{t,w)=x(t-u)x(t-v) with
w=viM¥u-u(ut+l)/2
G(w)= g(u,v) if u=v
= 2g(u,v) if u=v
h=[ 0h(0),h(1),.......b(R-1)]7 gxi vector
y={y(R),y(E+1),.....y(NN) 1T Nx1 vector
n=[ n(K),n(E+1),.....n(MN) IT Nx1 vector
yo={ y0,¥0,c0iiuiiiiiTg 1T Nx1 vector
G=[G(0),6(1),.....60M-1) 1T MMl vector

x(K) x(K-1) x(R-2).......x(1) ]

=(X+1)  =(F+2) x(K+3).......x(2)
(x]= .

X(N4K-1) x(M4E-2).eenevnnnnee x(N) |

NxK matrix

z(X,0) z(K,1)......z(K,MM-1)

z(X+1,0) z(K+1,1)....z(K+1,MM-1)
[2]= 3

2(K4N-1,0)  2(KeN=1,1)..z(KelN-1,MM-1)

NxMM matrix

the MSE can be written as

MSE=nT(n] =
(z-3o-hlx]-6[2]) (z-yo-{x]h-[z]6)=
¥Ty-20T[x1Ty-26T( 2] Ty+

2" 121"z (21T [x1n +



671217216y  (3-[x]b-[216)~
@ =TT 2] 76T 21 T) yor
39)Tyo %)

Seeking minima in the MSE with respect to yo, hi, and
Gi leads to:

let 3MSE/3 yo=0, resulting in
Wyo+I T x 1h+1T[236=1Ty ()
let 3MSE/% hi=0, resulting in

(I=1T{216+([x 1Tz Dhyolx1TI=[x]Ty
. (6)

let 3 MSE/5 Gi=0, resulting in

(1z]TxDe+([21T{2])G+y0[ 2] TT ={2]Ty -

These three equations can be combined and rewritten as
N
oy e ot (2] (m

(1T (21 @t
Ql Qg N yo »\Ro

where

G =<R (8)

Ro=ITy = constant
Ri=[x]y=Kx1 vector
R2=[2]y=MMx1 vector
Q1=I[x]=1xK vector
02=I[z]=1xMM vector

[M1]=[x][x]=KxK matrix

[M2]=[z][z]=MMxMM matrix

[Cl=[x][z]=KxMM matrix

For a specified order K and M, the system
functions h(u) and g(u,v) can be obtrained by solving
the set of linear equations (8) with z(t) and y(t)
being the cross—-flow and in-line responses
respectively. The identified system functions h(u)
and g(u,v), can be convolved with the measured
cross-flow respomse x{(t) to produce predicted linear
and quadratic components of the in-line respomse yl(t)
and y2(t) respectively as shown in equation (9). The
total predicted in-line response ys(t) and the
residual noise terms are also given.

a. n(t) = y(£)-ys(t)

b. ys(t) = yoty1(t) + yo(r)
K~-1

e yy(e) =} h(wx(t-uw) (9)
u=0
M~-1 M=-1

d. yz(t) = Z 2 g(u, vIx(t-uw)x(t- v)+y

u=0 v=0

AN EXAMPLE FOR THE LOCK-IN CASE

In this section, results are presented in which
typical lock-in response data were analyzed by using
the time domain multiple regression method described
in the previous section. The data was obtained from a
vibrating, horizontal steel tube 75 feet in length and
1.625 inches in diameter. The tube behaved
dynamically as a uniform beam under temsion with
pinned ends. The mode shapes in both cross-flow
{vertical plane) and in-line (horizontal plane)
directions were sine waves. The natural frequencies
were unequally spaced due to the bending stiffness of
the beam. The nateral frequencies are hhe szme in the
cross-ilow and in-line directicms. Vortex shedding
excited at various times from the second to the tenth
modes of vibration. At any given time, the cross-flow
and im-line vibration occured in different modes and
at different frequencies.

The tube contained seven biaxial pairs of
accelerometers distributed along the axis of the tube.
The accelercmeters measured in-line and cross-flow
vibration. Figure 1 shows a time history of motion in
the x-y plane measured by a pair of accelerometers
located at onme fourth of the length of the tube from
one end. The figure eight pattern is the result of
lock-in cross~flow vibration in the third mode and
in-line vibration in the fifth mode. The fifth mode
natural frequency is twice the natural frequency of
the third mode. The one fourth point of the span is
near an anti-node for both mode shapes. At L/4 both
node shapes have 70.7Z of their maximum anti-node
value. The vortex shedding process under lock-in
conditions generates a periodic zero mean lift force
distributed coherently along the span of the tube.
The vortex shedding also creates a non-zero mean drag
force which has fluctuating component at twice the
frequency of the lift force.

In this example the drag force excitation
frequency coincided with the fifth natural frequency
of the tube in the in-line direction. The figure
eight pattern indicates that although the in-line and
cross-flow motions are at different frequencies, they
are highly correlated. These x(t) and y(t) measured
time series were used in equation (8) to calculate the
system functions h(t) and g(u,v) from which the error
n(t) was then obtained. By increasing the order X and
M, a convergent MSE was reached. The error n(t) for
K=30 and M=9 was a wide-band noise indicated by its
flat spectrum. The ratio between the MSE and the
variance of in-line response was 2.6%. This small
amount of wide-band error implied that nonlinearities
higher than second order were negligible for the
lock~in case and the second order nonlinear system was
a reascnable model, relating the cross-flow and
in-line response.

From equation (9b), a simulated in-line response
ys(t) was obtained which was in good agreement with
the measured in-line response y(t). This agreement is
easier to visualize by comparing the x-y diagram of
cross—-flow response x(t) vs. simulated in-line
response ys(t), as shown in Figure 2 to the measured x
versus y data shown in Figure 1, The linear and
quadratic components of the predicted in-line response
y1(t) and yy(t) were calculated from equations (9¢c and
9d). The x-y diagrams of x(t) vs. yj(t) and x(t) vs.

y2{(t) in Figure 3 and 4 show that the linear in-line
response and quadratic in-line response contribute
quite different patterns to the total in-line
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response.

When the multiple regression method was applied ¢q
the non-lock-in case, the rate of convergence was much
slower than that of the lock-in case and became
inefficient due to the required larger order of K and
M. The reason for the siower convergence is that at
lock-~in, the response time series are quite
deterministic. Therefore, only a little past
information is requlred to predict the present
response, while the responses at non-lock-im are much
more random than the lock-in responses leading to the
requirement of a higher order of K and M in equation
{1). The gquadratic system identification for the
non-lock-in case will be discussed in the next
section.

QUADRATIC SYSTEM IDENTIFICATION AT NON-LCCR-IN

In this section, a frequency domain multiple
regression method for quadratic system identification
will be discussed for the non-lock-in case. A
quadratic model involving a square law system proposed
by Bendat and Piersol {3] is used in the system
identification. The residual error is used to
evaluate the existance of higher order nonlinearities
in the system input/output relatiomship. High linear
coherence between the in-line response and the square
of cross-flow response is demonstrated, which provides
additional evidence of the existence of quadratic
correlation between in-line and cross-flow response.

Least Squares Quédratic System Identification

A frequency domain quadratic system
identification method with the input, a statlonary
Gaussian random process has been used by several other
researchers [5,11]. The method is applied here to
non-lock-in response data to obtain the quadratic
transfer function.

The input and output of a quadratic system is
expressed as given in Equation 1:

y(t)= 2 h(u)x(t-u) + .
VY e(u, v)x(t-u)x(t-v)+n(t) ¢))

where n(t) denotes any error associated with the
imperfection of the model or noise in the system.
Here, a linear term is included even though the
in~line and cross-flow response are almost linearly
independent [7] for the non-lock-in case. The
transfer functions H(W) and G(Wy, Wp), are to be
determined such that the mean square error, MSE, of
n(t) is minimized. The MSE can be expressed as,

MSE=E[n2(t)]=E[y(t)- Th(u)x(t-u) -
ITe(u,v)x(t-u)x(t-v) ]2 (10)

Let
[x(€),X(W)1,[y(t), YW1, [hdw),HW)],
[g(u,v),G(W1,W2)]

be Fourier transform pairs. We find that

X
MSE=E([ § (Y(Wj)-H(Wj)X(Wj) -
=K

I] G(Wp,Ha) X (Wp) X(Wq) exp (15 £) 1
p+q=j

gl

4_2 E{Y(Wl)-H(WJ YX(Wi) -
= Z G(Wp, Wq)X(Wp)A(Wq)IZ (11)
P+q=]

E[YTW1)] +[»{(w3)]

I
R PR )-Fe R R )T ()
—““éEG(WD Wq\&*(w YX(Wp)X(Wq) +
;‘.H*(WJ)G(WD ViaYX* (3 )1 (W)X (Wg) —
s (W WY (4 )35 () RRCHQ) +
prq=j

SX - (WIGEH (W, Wa ) X(WI)X*(Wp)T*(Wq )+
ancin

pF

E3G{Wp,Wq)G*(Wr,Ws)X(Wo ) X(W)X*(Wr)X*(Ws) (12}
pg=i

Let 3 MSE/GB(Wj) =0, and®MSE/3C (Wm,Wn) =0 with
WmWn=Wj for all Wj. We obtain

B*(W1E[ X(W3) 2I=B[Z(W3T*Wi)] +
pi%i%*(wp,WQ}EIX(Wj)X*(WP)X*(WQ)] (13)
E[Y*(Wj)X(Wm)X(Wn)W_n*(W*)U{X*(WJ);X(WM)X(Wn)]
+ IEG¥(Wp,Wq)E[X*(Wp)X*(Wm)X(Wn) ] (14)
ptq=}
From the following definiticns,
Sxx(Wi)=E[X(WJ)X(-W])]
Sxy (W3)=E[X(W)¥(-W1)] - (15)
Bxxx(Wp,Wq )=E{X(Wp)X(Wq )X (~-Wp-Wg) ]
Bxxy (Wm,Wn)=E[X(Wm)X(Wn)Y(-Wm-Wn)]
Equations (13) and (14) can be rewritten as:

H*(W3)Szx(Wi)=Syx(Wj)+

ZIG*(Wp,Wq)Bxxx(Wp,Wq) (16)
ptq=j

Bxxy(Wm,Wn)=H*(Wj)Bxxx(Wm,Wn) +

Z2G*(Wp, Wq )E[X*(Wp)X* (W)X (Wm)X(Wn)]  (17)

prq=]

From these two equations, we see that the
determination of the transfer functions H(W) and
G(Wy,Wg) required the estimation of the fourth order
spectrum, which is difficult, due to computer storage
limitations. However, if the input x(t) is a Gaussian
random process, this problem can be simplified
considerably. If x(t) is a Gaussian random process,
the bispectrum Bxxx(Wm,Wn) is zero, and we can write
the fourth order cumulant spectrum as:
E[X*(Wp)X*(Wq )X (Wm)X(Wn) 1=
E[X*(Wp)X*(Wq) IE[X(Wm)X(Wn)]

E[X*(Wp)X(Wm) JE[X¥(Wq)X(Wn) ]+
E[X¥*(Wp)X(Wn)E[X*(Wq)X(Wm) ]=

s (Wp+¥Wq ) s(Wn4+Wm)Sxx(Wp)Sxx(Wm) +
6 (Wp-Wm) §(Wq-Wn)Sxx(Wm)Sxx(Wn)

§ (Wp-Wn) 8(Wq-Wm) Sxx (Wm) Sxx (Wn) (18)



The last term in equation (17) for nonzerc Wj becomes
4-%;G(Wp,Wq)E[X*(Wp)X*(Wq)X(Wm)X(Wn] =

T 2G{Wm,Wn)Sxx(Wm)Sxx(Wn) (19)
Finally we obtain

H(W) = Sxy(W)/Szx(W} (20)

G(Wy,Wo)=B*xxy(W1,Wp)/25xx (W1 )Sxy(Wg) (21)

These two equaticns can be used to determine the
linear and quadratic transfer functions, and only
require the estimation of the spectra Sxx(W), Sxy(W),
and the cross-bispectrum Bzxy(Wi,Wo) for a Gaussian
input. It has been shown [7] that the non-lock-in
cross-flow response can be approximated by a Gaussian
random precess as deduced from the Chi-square
goodness—-of~fit test on the response histogram of the
Castine data.

Figures 6 and 5 show the power spectra of the
cross-flow and in-line response at non-lock-in. -The
cross-bicoherence spectrum between these two
responses, as shown in Figure 7, indicates a
significant quadratic correlation between them. Figure
8 shows the magnitude of the quadratic transfer
function G(Wi,W2) at non-lock-in based on equation
(21) with the input cross~flow response a Gaussian
random process. Note that in this figure of G(Wq,Wp),
all the peaks tend to be concentrated along the 45
degree lines in the bi-~frequency plane. While G(Wy,Ws)
is the two-dimensional Fourier transform of the second
order impulse response kernel g(u,v), for a general
quadratic system, it need not possess this particular
property. This observation implies that this quadratic
system has certain properties which might enable
further simplification of the system in the
non-lock-in case. A special quadratic system.
possessing this particular property has been
formulated by Bendat and Piersol and will be discussed
in the next section.

QUADRATIC SYSTEMS INVOLVING SQUARE-LAW OPERATORS

Two models of a quadratic system which involve a
zero memory square~law system, as pictured in Figure
9, have been analyzed by Bendat and Piersol and are
briefly discussed here. The zero memory square law
system is either followed or preceded by a constant
parameter linear system. The properties of these two
models, referred to as Case 1 and Case 2, were
examined to check if either of them could be used to
simplify the quadratic system identification problem
for the non-lock-in case.

The combinations of a square-law system and a
linear system give the relations between x(t) and
yi(t), v2(t) as, from Case 1
y1(t)=h1(t)*[x(t)]2

fhl(u)[x(t—u)]zdu

i

S /hy(a) $(u-v)x(t~u)x(t-v)du dv

]

g1 (u,v)x(t-u)x(t-v)du dv 22)

from Case 2

y2(t)=[hp(t)*x(t)]2
= [rho(udx(t-u)dul?
= [ hy(u)ho(v)x(t-u)x(t-v)du dv
77 golu,v)x(t—u)x(t—v) du dv (23)

where ¥ denotes the linear convolution and &(u) is the
delta function. The second crder impulse response
kernals for these two cases are

g1{u,vi=hy(v)3{u-v) (24
go(u,v)=h2(u)ha(v) (25)

The Fourier tramsforms of these two equatioms give the
quadratic transfer functioms Gj(Wi,Wo) and Go(Wp
as,

Gy (Wy,Wp)=H1(W1+Wp) (26)
Go(Wy,Wo)=Ho(Wi)Hp(Wa) (27)

The system function Hj(¥W) and Hp(W) can be obtained by
writing equations (26) and {(27) as

Gy (W/2,W/2)=Hy (W/2+W/2)=H; (W) (28)
Go (W, W)=Ho2 (W) (29)

By using equation (21) for quadratic system
identification with Gaussian inputs, we obtain

Hy (W)=G1(W/2,W/2) =
Bxxy(W2,W/2)/282xx(W/2) = 30)
Bxyy (W/2)/282xx(W/2)

Hy (W)=SQRT[Go (W, W) 1=Bxxy2(W,W)/252xx(w)
(31)
= BxyZ(w)/252xx(W)

In which Bxy(W) is the special bispectral demsity
function defined by

Bxy (W)=Bxxy (W, W)=E[X(W)X(W)Y(2W)] (32)

Equations (30) and (31) were derived from the
least square error point of view and they are
identical to the results formulated by Bendat.

The linear transfer function H(W) derived by
Bendat is also identical to the results of section &
which was

H(W)=Sxy(W)/Sxx (W) (33)

Checking the properties of the quadratic transfer
functions in equations (26) and (27) permits one to
determine whether or not the Case 1 model or the Case
2 model is more appropriate to fit to the non-lock-in
data. According to equation (26) for Case 1, any peak
associated with the function Hj(W) will show up along
a 45-degree line in the bi-frequency plane of
G1(Wy,Ws) which is similar to the result stated in
section 4, while Case 2 does not possess this
property. The Case 1 model was chosen to model the
non-lock-in response data. The goodness of fit of the
Case 1 model would be checked by the residual n(t).
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The data presented in the previous section for
the non~lock-in cases were analyzed again by using the
Case 1 model. The system functions H(W) and Hj(W)
were obtained from equations (33) and (30). From the
identified system functions H(W) and H1(W), the
spectrums of the residual n{t), the linear and
quadratic responses v(t) and yl(t), as well as the
simulated in-line response ys(t) were obtained
according to,

Svv(W)=Sxx(W) |H(W) |2 (34)
8y171(W)=8z121 (W) [E3 (W) |2 (35)
Sysys(W)=Svv(W)+Sy1y7 (W) (36)
Snn(W)=Syy(W)-Sysys(W) 3N

A small residual spectrum Snn(W) was obtained
which indicated an accurate fit of the Case 1 model to
the data. This also meant that higher crder
nonlinearities were negligible. The spectrum of
simulated in-~line response Sysys(W) as shown in Figure
11 was in good agreement with in-line response
spectrum Syy(W) shown in Figure 5. The spectrum
Sysys(W) is almost entirely dominated by the guadratic
in-iine response. The obtained linear in-line respomnse
spectrum Svv(W) was very small and was not shown here.
This result is quite different from that of the
lock-in case.

Finally, it is interesting to examine the
characteristics of the square of the cross-flow
response, that is the output zj(t) from the square-law
system in the Case 1 model. Figure 10 shows the
spectrum of zy(t), Szjzj(W), in which the two dominan
peaks are located at frequencies exactly equal to that
of the in-line response spectrum Syy(W) shown in
Figure 5. Figure 12 shows the linear cross-coherence
spectrum between zj(t) and y(t) which demonstrates
that these two fluctuating quantities were highly
linearly coherent as shown by the high peaks at the
two dominant frequencies. This result provided
additional evidence of the existence of quadratic
correlation between cross-flow and in-~line response.

CONCLUSIONS

In conclusion, it should be emphasized that
although the results presented in this paper are based
on data taken from a single mechanical system, they do
suggest that the relationship between cross-flow and
in-line response might be best described by a second
order nonlinear system for both lock-in and
non-lock-in cases. Nonlinear correlations higher than
second order were negligible in the nonlinear
relationship for both cases. Furthermore, it was
indicated in this paper that quadratic transfer
functions can be computed by using both time domain
and frequency domain multiple regression methods.
Knowledge of these transfer functions may be useful in
modelling the relationship between cross-flow and
in-line response, or equivalently, the lift and drag
forces of flow-induced vibration. In addition, for the
non-lock-in cases, the square-law system provided a
potential way to simplify modelling of the
relationship.

In the case of frequency domain analysis, it has
been assumed that the non-lock-in cross-flow response
is Gaussian. For other applications of quadratic
system identification with non-Gaussian input, one can

use the time domain multiple regression method to
obtain the impulse response kernels. However, the .
practicality of this method is mot clear for a random
input case.
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